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Abstract

A layerwise optimization (LO) approach is extended to accommodate the finite element analysis for optimizing the
free vibration behavior of laminated composite plates with discontinuities along the boundaries. The classical non-
conforming finite element is modified to fit into the LO procedure and is used to calculate natural frequencies of
symmetrically laminated plates. This combined LO-FEM approach is applied to laminated rectangular plates with
combinations of free, simply supported and clamped edges along parts of the plate boundary. The fundamental
frequency, an object function for the present study, is maximized by optimizing design variables that are a set of fiber
orientation angles in the layers. For illustrative purpose nine examples of square and rectangular plates with various
types of mixed boundary conditions are considered, and a comprehensive set of results are presented for the optimum
fiber orientation angles and the maximum fundamental frequencies of the 8-layer and 24-layer plates.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of fibrous composites is rapidly increasing in structural applications and there arises a vast de-
mand for information on the vibration characteristics of composite structural elements. Among them, a
laminated rectangular plate having discontinuities along the boundary constitutes an important problem,
since laminated composites in practical applications are constrained in various fashion along the edges.

A literature survey shows that the vibration of isotropic plates with mixed boundary conditions has been
analyzed in a number of references. Ohta and Hamada (1963) obtained the fundamental frequency of a
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simply supported plate partially clamped on the edge. Keer and Stahl (1972) analyzed the problem by use of
a Fredholm integral equation and showed variation of the fundamental frequency with the change of
clamped portion. This problem was also studied by Rao et al. (1973) by making use of the finite element
method. These works are limited to determining the fundamental frequencies.

In the 1980s, the present author (Narita, 1981) published a paper to extend a series-type method to vibra-
tion of orthotropic rectangular plates and presented the lowest several frequencies. Fan and Cheung (1984)
used a finite strip method to analyze rectangular plates with complex edge support conditions. Gorman
(1984) applied an accurate series-type approach to the analysis of rectangular plates with mixed boundary
conditions.

More recently, in the 1990s, Mizusawa and Leonard (1990) used a spline strip method to study vibration
and buckling of plates with mixed boundary conditions. Liew et al. (1993) applied the substructure method
to the problem. Laura and Gutierrez (1994) analyzed vibrating rectangular plates with non-uniform bound-
ary conditions by using the differential quardrature (DQ) method. Shu and Wang (1999) treated mixed and
non-uniform boundary conditions in generalized differential quadrature (GDQ) analysis. Wei et al. (2001)
determined natural frequencies of rectangular plates with mixed boundary conditions by using discrete sin-
gular convolution.

Despite such previous studies for isotropic case, a lack of solutions is obvious for the vibration of com-

posite plates with mixed boundary conditions. Moreover, to the author�s best knowledge, there are no pa-
pers dealing with the optimization problem of vibrating laminated composite plates having mixed boundary
conditions, although some papers are found, for example a work by Fukunaga et al. (1994) using the
lamination parameters (Gurdal et al., 1999), to deal with vibration optimization of laminate plates with
uniform boundary conditions.

The primary objectives of this paper are to develop a finite element to be implemented in the layerwise
optimization (LO) approach and to apply the LO-FEM approach to the frequency design problem for
laminated composite plates with mixed boundary conditions. The LO approach was first proposed by
the present author (Narita, 2003) to determine the maximum fundamental frequency of laminated compos-
ite plates and was improved as a more general iterative approach (Narita and Turvey, 2004). In these
previous papers, a Ritz method was used to calculate the object function, viz a fundamental frequency
of the plate. The Ritz method has an advantage in its efficient computation for plates with uniform edges,
but is not suitable for dealing with more complicated problems such as the plates with mixed boundary
conditions, as considered in the present paper.

In this work, a classical non-conforming finite element is modified to be used in the LO procedure for
symmetrically laminated composite plates. The combined LO-FEM approach is applied to thin laminated
rectangular plates with combinations of free, simply supported and clamped partial edges. The fundamental
frequency is maximized by use of design variables that are a set of fiber orientation angles in the layers.
Nine examples of square and rectangular plates are considered with various types of mixed boundary con-
ditions, and results are presented for the optimum fiber orientation angles and the corresponding maximum
fundamental frequencies of the symmetric 8-layer and 24-layer plates.
2. Optimum design problem and LO procedure

2.1. Problem description

A symmetrically laminated rectangular plate is considered, as shown in Fig. 1, where in each layer the
major and minor principal material axes are denoted by the L and T axes, respectively. The EL and ET are
elastic moduli in the L and T directions, respectively, GLT is the shear modulus and mLT is the major Poisson
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Fig. 1. Laminated composite rectangular plate with mixed boundary conditions.
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ratio. The angle between the L and x axes is denoted by h. The total number of layers is 2K, where K layers
exist in the upper (lower) half of cross-section.

The dimension of the whole plate is given by a · b · h (plate thickness). The plate has mixed boundary
conditions, specifically having free, simply supported and clamped edges along parts of the boundary.
The symbols F, S and C stand for free, simply supported and clamped edges, respectively, and are used
in the way as marked in Fig. 1.

For laminated thin plates, the motion of the plate vibrating in sinusoidal time variation is governed by
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where w is the amplitude, q is a mean mass per unit area of the plate and x is a radian frequency of free
vibration. The Dpq (p,q = 1,2,6) are the bending stiffness of the symmetric laminate and are determined in
the lamination theory (Vinson and Sierakowski, 1986; Jones, 1999) by
Dpq ¼
2

3

XK

k¼1

Q
ðkÞ
pq ðz3

k � z3
k�1Þ ð2Þ
(p,q = 1,2,6), where zk is a thickness coordinate measured from the middle surface. The Q
ðkÞ
pq are elastic con-

stants in the kth layer and are defined by EL, ET, GLT and mLT, together with the fiber orientation angle h.
Natural frequency is normalized as a frequency parameter
X ¼ xa2ðq=D0Þ1=2 ð3Þ
where D0 = ET h3/12(1 � mLTmTL) is a reference bending stiffness. The frequency parameter X1 for the
fundamental (lowest) mode is used as an object function and will be designed to maximize its value in
the present optimization. The mathematical expression for such optimization problem is written as
X1 ¼ X1ð~hÞ !Max ðobject functionÞ ð4Þ
subject to
~h ¼ ðh1; h2; . . . ; hKÞ ðdesign variablesÞ
� 90� 6 hk 6 90� ðk ¼ 1; 2; . . . ;KÞ ðconstraint conditionsÞ ð5Þ
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The design variables are taken to be a set of fiber orientation angles in the K layers of the half of the cross-
section and are written in the notation
½h1=h2= � � � =hk= � � � =hK �S ð6Þ
where hk is an fiber orientation angle in the kth layer (k = 1: outermost, k = K: innermost) and a subscript
‘‘s’’ denotes a symmetric lamination. The angles are hereafter given only by numbers for the sake of brevity,
i.e. [�45/90]s instead of [�45�/90�]s.
2.2. Layerwise optimization (LO) procedure

When a fiber orientation angle in each layer is taken to be a design variable in one-to-one way, an inten-
sive computational problem is unavoidable, wherein optimum solutions must be determined in multi-
dimensional space. One way to avoid such a computational problem is to use the lamination parameters
(Gurdal et al., 1999). The use of such intermediate parameters, however, requires another mathematical
process which prevents practical use of the approach from obtaining the actual optimum fiber orientation
angles.

The LO approach dissolves such a conventional mathematical and/or computational problem and re-
duces the multi-dimensional optimum solution search to a few iterative cycles of one-dimensional search
(Narita and Turvey, 2004). For such significant reduction, physical observation that the outer layer has
more stiffening effect than the inner layer in bending of laminated plates is utilized. This well-known phys-
ical fact may be interpreted as ‘‘the outer layer plays more decisive role in determining the natural fre-
quency of laminated plates’’. Based on this observation, a hypothesis that

The optimum stacking sequence [h1/h2/� � �/hk/� � �/hK]s,opt for the maximum natural frequency of

laminated plates can be determined sequentially in the order from the outermost to the innermost layer is
proposed.

Suppose XðkÞ1;opt is assumed to be the maximum frequency parameter obtained in the kth step (Note
that the same k indicating the layer number is used because it deals with the kth layer), the following pro-
cedure, based on the foregoing assumption, is used to determine the maximum fundamental frequency
X1,opt.

Step 0. Assume a symmetrically laminated plate made of K hypothetical layers in the half of the cross-
section with no bending stiffness.
Step 1. Find h1,opt, using a one-dimensional search, which gives Xð1Þ1;opt to maximize the object function of
the laminated plate with an orthotropic lamina (i.e., with EL, ET, GLT and mLT) in the first (outermost)
layer. The (K � 1) inner layers remain hypothetical with no bending stiffness.
Step 2. Find h2,opt, using a one-dimensional search, which gives Xð2Þ1;opt of the laminated plate with an
orthotropic lamina in the second layer and an orthotropic first layer with h1 = h1,opt. The inner
(K � 2) layers remain hypothetical with no stiffness.
Step k (k = 3 to K � 1). The foregoing process is repeated to yield h3,opt, . . .h(K�1),opt.
Step K. Find hK,opt which gives XðKÞ1;opt to maximize the object function of the laminated plate with an
orthotropic lamina in the Kth innermost layer. This last step determines the optimum lay-up [h1/h2/
� � �/hK]s,opt which yields the maximum object function X1;opt ¼ XðKÞ1;opt of the plate.

The above set of Steps 1–K may be considered as one cycle of an LO iterative solution procedure. In the
first cycle, the inner layers are initially assumed to have zero stiffness. The fiber orientation angles deter-
mined at Step K in the first cycle are considered as a better initial approximation for the second cycle.



Fig. 2. Flow chart of the algorithm used in the LO approach.
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The iterative cycles continue until a converged solution is obtained. The algorithm is described in the flow
chart in Fig. 2.
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2.3. Finite element formulation modified in LO procedure

Due to the difficulty in solving the differential equation (1) that involves odd derivatives, the direct ana-
lytical solution is impractical, particularly for problems involving mixed boundary conditions. The finite
element method is therefore employed to consider such complicating edge conditions. For symmetrically
laminated thin plates, the strain energy stored in the plate during bending is given by
U ¼ 1

2

ZZ
A
fjgT½D�fjgdA ð7Þ
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fjg ¼ � o
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� o
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is a vector of bending curvatures, consisting of second derivatives of w, and [D] is the bending stiffness coef-
ficient matrix
½D� ¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2
64

3
75 ð9Þ
that relates the moment resultant
fMg ¼ Mx My Mxyf gT ð10Þ
to the curvature (8) by the relationship {M} = [D]{j}.
In applying the aforementioned LO approach, the stiffness element in Eq. (9) is modified from Eq. (2) to

a form suited for use in Step k in the LO procedure as
Dpq ¼
2

3

Xk

n¼1

Q
ðnÞ
pq ðz3

n � z3
n�1Þ ð11Þ
(p,q = 1,2,6), where the summation index n runs through from 1 to k and the stiffness evaluation for layers
with n = k + 1 to K is ignored. This means that the bending stiffness is evaluated in the outer k layers
(n = 1, . . .,k) but is kept zero for hypothetical layers (n = k + 1, . . .,K).

Suppose a rectangular finite element with nodes i, j, k, l and the deflection (amplitude) in the element is
expressed (Zienkiewicz and Taylor, 1991) by
wðx; yÞ ¼ ½N �fdeg ð12Þ

where {de} is the element displacement vector
fdeg ¼ fdi; dj; dk; dlgT ð13Þ

obtained by listing four nodal displacement vectors such as
fdig ¼ wi owi=ox owi=oyf g ð14Þ
The shape function [N] is written as
½N � ¼ fPg½C��1 ð15Þ

where {P} and [C] are defined by using
wðx; yÞ ¼ fPgfag ð16Þ
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fPg ¼ 1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3
� �

ð17Þ
fag ¼ fa1; a2; a3; . . . .; a12gT ð18Þ
and
fdeg ¼ ½C�fag ð19Þ

The curvature vector is obtained by
fjg ¼ ½Q�fag ¼ ½Q�½C��1fdeg ð20Þ

where [Q] is derived from Eqs. (8) and (16). Substitution of Eq. (20) into Eq. (7) yields the strain energy
U e ¼
1

2
fdegT½Ke�fdeg ð21Þ
written in terms of the element displacement vector, where
½Ke� ¼ ð½C��1ÞT �
ZZ

A
½Q�T½D�½Q�dA � ½C��1 ð22Þ
is the element stiffness matrix in the present formulation.
Following similar procedure, the maximum kinetic energy of the plate element
T e ¼
1

2
x2

ZZ
A
qw2 dA ð23Þ
may be rewritten in terms of the element displacement vector as
T e ¼
1

2
x2fdegT½Me�fdeg ð24Þ
where
½Me� ¼ ð½C��1ÞT �
ZZ

A
qw2 dA � ½C��1 ð25Þ
is the element mass matrix. As in the standard finite element procedure, one obtains the global eigenvalue
equation as
ð½K� � X2½M �Þfdg ¼ 0 ð26Þ

where [K] and [M] are the global stiffness and mass matrices, respectively, and {d} is a global displacement
vector. Eq. (26) is a set of homogeneous linear equations in the unknown displacements {d}. For non-trivial
solution the determinant is equal to zero, and the eigenvalues correspond to natural frequencies of the
plate. The lowest of these is used as an object function in the optimization.
3. Numerical results and discussions

3.1. Convergence and comparison of the FEM solutions

Numerical examples are given for symmetrically laminated, 8-layer or 24-layer square (a/b = 1) and rect-
angular plates (a/b = 1/3–3). The design variables are presented in the usual notation as [h1/h2/h3/h4]s for
8-layer plates, where h1 is the fiber orientation angle of the 1st layer (outermost) and h4 is that of the 4th
layer (innermost). Each of the optimum fiber orientation angles for h1, h2, h3 and h4 is determined with an
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increment of h = 5� in one-dimensional search. The similar notation is used for 24-plates, as an example of
plates with many layers, with an increment of h = 15� in numerical results.

Boundary conditions are given for free (F), simply supported (S) and clamped (C) edges along parts of
the plate boundary. For free edge part, no constraints are given to the displacement (16) and for simply
supported edge part, amplitude w and slope parallel to the edge are rigidly constrained. All the elements
in the nodal displacement vector (14) are set to zero along the clamped part. The elastic material constants
used in the following examples are taken from a reference (Vinson and Sierakowski, 1986) as
Graphite=epoxy ðG=EÞ: EL ¼ 138 GPa; ET ¼ 8:96 GPa; GLT ¼ 7:1 GPa; mLT ¼ 0:30 ð27Þ
for Graphite/epoxy composite with strong orthotropy (EL/ET = 15.4).
Fig. 3 presents nine numerical examples considered in the present study. They are classified into three

groups with three examples each. In the first group (Ex. 1, 2, 3) plates are clamped only at one half (a/2)
of a bottom edge while in the second group (Ex. 4, 5, 6) plates are clamped symmetrically at one half
(a/2) of a pair of opposite edges. The plates are clamped in the third group (Ex. 7, 8, 9) symmetrically
at four corners with a quarter length (a/4) of the edges. The total length of the clamped parts is therefore
a/2, a and 2a for the first, second and third groups, respectively, in the case of square. The remaining edges,
other than the clamped parts, are kept free in Ex. 1, 4, and 7 and are simply supported in Ex. 2, 5 and 8. The
right-hand-side edge is simply supported and the rests are free in Ex. 3, 6 and 9.

A sample convergence study is presented in Table 1 for 8-layer square plates. The first five frequency
parameters defined in Eq. (3) of Ex. 1 and Ex. 2 are given with different numbers of finite elements, starting
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Fig. 3. Numerical examples—rectangular plates with mixed boundary conditions.



Table 1
Convergence study of lowest five frequency parameters X of 8-layer square plates (a/b = 1, [30/�30/30/�30]s)

X1 X2 X3 X4 X5

Ex. 1
14 · 14 4.419 16.55 27.58 45.48 72.80
16 · 16 4.428 16.51 27.53 45.37 72.72
18 · 18 4.422 16.49 27.51 45.31 72.69
20 · 20 4.398 16.47 27.51 45.28 72.69

Ex. 2
14 · 14 56.54 111.9 148.7 187.2 219.4
16 · 16 56.57 112.0 148.8 187.4 219.8
18 · 18 56.59 112.0 148.9 187.5 220.1
20 · 20 56.61 112.1 149.0 187.7 220.3
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from 14 · 14 to 20 · 20, in x and y directions. The fiber orientation angles are taken to [30/�30/30/�30]s.
Because the present finite element is a non-conforming element, there is no concrete tendency in frequency
variation such as monotonous increase or decrease. Actually the frequencies generally decrease in Ex. 1
while they increase in Ex. 2 as the number of finite elements is increased. In any case it is observed that
the frequency parameters are well converged for the present purpose, and the 20 · 20 solution will be used
throughout in the paper.

There have been many papers dealing with vibration of isotropic plates with mixed boundary conditions
and a comparison study is given in Table 2 for Ex. 2, 5 and 8 to verify the accuracy of the present FEM
solution. There is no exact solution available for the problem. When the present result X1 = 22.49 in Ex.
2 is compared to the average value X1 = 22.51 of the other 11 past reference values, they are found in very
good agreement (difference is less than 0.1%). The same is true (about 0.4% difference) when Ex. 5 for
X1 = 28.37 is compared to the average values of X1 = 28.49 of the other five results. The agreement between
the present FEM and other results is thus quite excellent, even up to higher modes. Table 3 presents the first
five frequencies of Ex. 1, 3, 4, 6, 7 and 9 of isotropic square plates for future comparisons, where no ref-
erence values have been found so far.

3.2. Optimum solutions for square and rectangular plates

Table 4 presents one example of the optimization process for a square plate (Ex. 2) when the number of
iterative cycles (NIC) is two for complete convergence with an increment h = 5� in one-dimensional search.
The first cycle, composed of five steps in the case of symmetric 8-layer plate, yields the optimum design vari-
ables (a set of the fiber orientation angles) of [70/�50/50/50]s with X1 = 62.32. The fiber orientation angles
thus obtained are used as a starting solution (Step 0) in the second cycle, and the second cycle ends up with
[55/�50/�55/55] and X1 = 63.54. The third cycle gives an identical solution as in the second cycle, indicat-
ing that the solution is converged within the span of an increment h = 5�.

Table 5 presents a list of converged optimum solutions for the nine examples of square plates obtained
by an LO procedure. To each example, the optimum fiber orientation angle [h1/h2/h3/h4]s,opt and the cor-
responding maximum fundamental frequency X1,opt are given with the number of iterative cycles (NIC).
There are no specific fiber orientation angles that are dominant in the first (Ex. 1–3) and second groups
(Ex. 4–6), but the dominant angles ± 45� are found in the third group (Ex. 7–9) due to the strong clamping
constraints symmetrically located in the four corners. NIC = 1 was found in four examples among nine
examples.

Table 6 is used to verify that the optimum solutions [h1/h2/h3/h4]s,opt listed in Table 5 actually give
higher frequency values than those with other stacking sequences. Typical stacking sequences of the



Table 2
Comparison of frequency parameters X of isotropic square plates with mixed boundary conditions (m = 0.3)

X1 X2 X3 X4 X5

Ex. 2
Present FEM 22.49 49.84 55.62 81.85 99.43
Ohta and Hamada (1963) 22.4 – – – –
Keer and Stahl (1972) 22.49 – – – –
Rao et al. (1973) 22.96 – – – –
Narita (1981) 22.63 50.04 55.95 82.34 99.71
Fan and Cheung (1984) 22.73 50.15 56.23 – –
Gorman (1984) 22.48 – – – –
Mizusawa and Leonard (1990) 22.71 50.10 56.13 82.37 99.73
Liew et al. (1993) 22.40 – – – –
Laura and Gutierrez (1994) 21.99 – – – –
Shu and Wang (1999) 22.42 49.93 55.51 82.32 99.64
Wei et al. (2001) 22.42 49.88 55.54 82.26 99.67

Ex. 5
Present FEM 28.37 52.26 67.64 89.74 100.2
Keer and Stahl (1972) 28.37 – – – –
Rao et al. (1973) 28.62 – – – –
Narita (1981) 28.44 53.49 67.85 90.50 100.6
Fan and Cheung (1984) 28.65 54.00 68.58 – –
Wei et al. (2001) 28.36 53.29 67.60 89.87 100.4

Ex. 8
Present FEM 25.74 58.03 58.03 97.45 101.4
Narita (1981) 26.18 58.70 58.70 98.58 102.0
Liew et al. (1993) 24.72 56.97 – 96.37 100.6
Wei et al. (2001) 26.66 56.90 62.30 96.33 105.3

Table 3
Frequency parameters X of isotropic square plates with mixed boundary conditions (m = 0.3)

X1 X2 X3 X4 X5

Ex. 1
Present FEM 2.759 6.200 14.15 23.48 26.73

Ex. 3
Present FEM 5.271 18.85 23.96 39.74 51.83

Ex. 4
Present FEM 17.05 17.23 34.03 40.27 40.27

Ex. 6
Present FEM 17.16 30.80 40.27 56.51 68.06

Ex. 7
Present FEM 25.03 52.27 52.27 71.07 87.58

Ex. 9
Present FEM 25.19 52.28 54.59 75.00 91.72
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symmetric 8-layer plates are chosen for comparison as [0/0/0/0]s, [90/90/90/90]s, [0/90/0/90]s, [30/�30/30/
�30]s, [45/�45/45/�45]s and [0/�45/45/90]s. The first three (i.e., [04]s, [904]s and [(0/90)2]s) are macroscop-
ically specially orthotropic. The next two ([(30/�30)2]s and [(45/�45)2]s) are alternating angle-ply
sequence, and the last one ([0/�45/45/90]s) is a quasi-isotropic case. The highest fundamental frequencies



Table 4
Illustration of a LO procedure for a symmetric 8-layer square plate (Ex. 2, a/b = 1, increment h = 5�)

[h1/h2/h3/h4]s X1

First iterative cycle of solutions
Step 0 [*/*/*/*]s –
Step 1 [70/*/*/*]s 44.72
Step 2 [70/�50/*/*]s 57.87
Step 3 [70/�50/50/*]s 61.80
Step 4 [70/�50/50/50]s 62.32

Second iterative cycle of solutions
Step 0 [70/�50/50/50]s 62.32
Step 1 [55/�50/50/50]s 63.17
Step 2 [55/�50/50/50]s 63.17
Step 3 [55/�50/�55/50]s 63.54
Step 4 [55/�50/�55/55]s 63.54

Third iterative cycle of solutions (same as second)

Table 5
Converged optimum solutions by a LO procedure for symmetric 8-layer square plates with mixed boundary conditions (a/b = 1,
increment h = 5�, NIC: number of iterative cycle)

[h1/h2/h3 /h4]s,opt X1,opt NIC

Ex. 1 [70/70/60/�45]s 9.507 1
Ex. 2 [55/�50/�55/55]s 63.54 2
Ex. 3 [�70/45/�70/45]s 15.86 3
Ex. 4 [70/�25/�45/�40]s 44.80 3
Ex. 5 [90/85/�70/60]s 85.43 2
Ex. 6 [85/0/�65/�5]s 46.57 4
Ex. 7 [45/�45/�45/�45]s 65.64 1
Ex. 8 [45/�45/�45/�45]s 69.89 1
Ex. 9 [45/�40/�45/�45]s 66.63 1

Table 6
Comparison between the optimum frequency X1,opt and reference frequencies X1 of symmetric 8-layer square plates for six typical
stacking sequences (a/b = 1)

X1,opt [04]s [904]s [(0/90)2]s [(30/�30)2]s [(45/�45)2]s [0/�45/45/90]s

Ex. 1 9.507a 2.982 6.631 5.948 4.398 6.513 4.531
Ex. 2 63.54a 45.86 54.56 50.40 56.61 62.16 52.57
Ex. 3 15.86a 6.934 14.30 10.26 12.24 14.56 11.26
Ex. 4 44.80a 19.76 33.12 37.29 27.85 37.79 31.56
Ex. 5 85.43a 49.15 85.30 63.99 62.44 72.83 60.87
Ex. 6 46.57a 21.29 33.19 40.23 32.98 40.91 33.92
Ex. 7 65.64a 47.94 47.94 60.18 61.04 65.35 60.68
Ex. 8 69.89a 57.03 57.03 61.11 67.09 69.56 64.40
Ex. 9 66.63a 51.13 47.96 60.60 63.55 66.27 62.27

a Maximum frequency value in the same example.
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�45/45/90]s (quasi-isotropic).
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among those with the same boundary condition in the table are denoted by a and it is observed that all the
present optimum solutions yield higher frequency values than those of plates with other stacking
sequences.

The optimum of the present solutions is also corroborated graphically in Fig. 4, wherein the present solu-
tions are compared to the reference values. In the figure, specially orthotropic plates, [04]s and [904]s are
denoted by m and n, respectively, and [(0/90)2]s is by �. The alternating angle-ply sequences [(30/�30)2]s
and [(45/�45)2]s are denoted by � and d, respectively. The last quasi-isotropic case [0/�45/45/90]s is by
s. It is clearly seen in the figure that the present optimum solutions (denoted by j) yield higher fundamental
frequencies than any of those plates with typical stacking sequences. The differences between the maximum
and minimum frequencies are less significant in the first group (Ex. 1–3).

Structural applications of composite rectangular plate may involve various aspect ratios and it is of prac-
tical interest to examine whether an LO procedure works or not for different aspect ratios. For the purpose,
Table 7 presents results of optimum solutions for Ex. 2 in the case of aspect ratios ranging from a/b = 1/3
to 3. In the table, the angle h = 0 in layers is dominant for a/b = 1/3 and 1/2 because the fibers (the major
material axis) are directed to bridge the short span between a pair of opposite simply supported edges. For
large aspect ratios, say a/b = 2 and 3, the partial clamped edge still has an effect to slant the optimum fiber
angles from h = 90�. The optimum of these solutions (Ex. 2) is demonstrated for various aspect ratios in
Fig. 5 by illustrating that the optimum frequency parameters X1,opt are all higher than those with other typ-
ical stacking sequences. The same symbols as in Fig. 4 are used for various stacking sequences. In present-
ing the frequencies, the parameter X1 is divided by a/b so that the modified parameters X1/(a/b) give the
frequencies for the plates with an equivalent plate area. It is observed again that the present optimum
frequencies are all higher that those with other stacking sequences.
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Fig. 5. Comparison between the optimum frequency parameter X1,opt/(a/b) and frequency Parameters X1/(a/b) of symmetric 8-layer
square plates (Ex. 2) with seven different aspect ratios; Present optimum frequency X1,opt, m: [04]s, n: [904]s, �: [(0/90)2]s, �: [(30/
�30)2]s, d: [(45/�45)2]s, s: [0/�45/45/90]s (quasi-isotropic).

Table 7
Converged optimum solutions for Ex. 2 by a LO procedure for symmetric 8-layer rectangular plates with various aspect ratios
(increment h = 5�, NIC: number of iterative cycle)

a/b [h1/h2/h3/h4]s,opt X1,opt NIC

1/3 [0/0/0/0]s 39.24 1
1/2 [0/0/0/5]s 40.08 1
2/3 [�25/35/35/30]s 42.72 4
1 [55/�50/�55/55]s 63.54 2
3/2 [65/�65/65/65]s 116.0 2
2 [65/�65/70/70]s 183.7 3
3 [90/85/�85/70]s 366.1 1
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In Table 8, the maximum fundamental frequencies and their corresponding fiber orientation angles are
presented to show the effectiveness of the LO approach even for plates with many layers. This example
represents the fact that even very thin layers (i.e., with the layer thickness obtained by dividing the plate
thickness by 24) can make the difference in bending stiffness enough to allow the layerwise optimization
to work well. The optimum frequencies are compared to the frequencies of the plates with typical lay-
ups of [012]s, [(0/90)6]s, [(45/�45)6]s and [(0/�45/45/90)3]s, and have the highest frequency values in all
the cases. It is also interesting to compare the optimum fiber orientation angles of the 24-layer plates with
those of the 8-layer plates in Table 5. Direct comparison of the solutions is possible for both plates with
different number of layers, since the frequency parameter X is normalized with the plate thickness. In



Table 8
Converged optimum solutions and reference frequencies of symmetric 24-layer square plates for four typical stacking sequences
(a/b = 1, increment h = 15�)

X1

Xopt [012]s [(0/90)6]s [(45/�45)6]s [(0/�45/45
/90)3]s

[h1/h2/h3/h4/h5/h6/h7/h8/h9/h10/h11/h12]s,opt, (NIC)

Ex. 1 9.563a 2.982 6.528 6.402 6.395 [75/60/75/75/75/75/30/90/45/60/30/75]s, (NIC = 2)
Ex. 2 63.16a 45.86 51.91 62.67 56.48 [60/�45/60/60/�60/�60/60/60/60/60/60/60]s,

(NIC = 2)
Ex. 3 15.84a 6.934 11.23 14.92 13.04 [�75/45/45/�60/�60/�60/�60/�60/45/60/�60/45]s,

(NIC = 3)
Ex. 4 45.22a 19.76 40.40 38.43 41.02 [�60/45/90/0/60/�60/�15/60/�30/60/75/�45]s,

(NIC = 1)
Ex. 5 85.42a 49.15 68.91 74.27 69.41 [90/90/90/90/90/�75/60/�75/75/�75/75/75]s,

(NIC = 1)
Ex. 6 46.51a 21.29 43.87 41.62 41.97 [75/�15/90/90/0/�75/0/90/90/90/90/75]s, (NIC = 2)
Ex. 7 65.69a 47.94 60.82 65.65 64.03 [45/�45/�45/45/�45/45/45/�45/45/�45/�45/30]s,

(NIC = 1)
Ex. 8 69.96a 57.03 61.39 69.92 66.05 [45/�45/�45/45/�45/45/45/�45/45/�45/�45/�45]s,

(NIC = 1)
Ex. 9 66.66a 51.13 61.01 66.59 64.70 [45/�45/�45/30/45/�45/�45/45/�45/45/45/30]s,

(NIC = 1)

a Maximum frequency value in the same boundary condition.
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theory, the optimum frequencies of the 24-layer plates should be slightly higher than those of the 8-layer
plates for the same increment in h, because the 24-layer plates have more design degree of freedom, i.e.
more number of design variables, than the 8-layer plates. This tendency is observed in most cases, but
due to the different increment (h = 5� and 15�) the maximum difference is found in Ex. 2 where X1,opt of
the 8-layer plate is only 0.6 percent higher than X1,opt of the 24-layer plate.
4. Conclusion

It has been demonstrated that the layerwise optimization approach, taking the finite element method
into the process of calculating the object function, is numerically efficient and practical for optimizing
the vibration behavior of laminated composite plates. To the author�s knowledge, this is the first publica-
tion to have solved the optimum design problem for vibrating laminated composite plates with mixed
boundary conditions. It is hoped that the LO approach, coupled with the FEM analysis, provides designers
with a powerful means for developing the tailoring applications in composite structural design.
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